首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   75篇
  2023年   21篇
  2022年   15篇
  2021年   38篇
  2020年   22篇
  2019年   27篇
  2018年   32篇
  2017年   28篇
  2016年   33篇
  2015年   46篇
  2014年   41篇
  2013年   65篇
  2012年   71篇
  2011年   54篇
  2010年   38篇
  2009年   36篇
  2008年   41篇
  2007年   32篇
  2006年   28篇
  2005年   21篇
  2004年   24篇
  2003年   24篇
  2002年   28篇
  2001年   10篇
  2000年   11篇
  1999年   16篇
  1998年   2篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有862条查询结果,搜索用时 472 毫秒
31.
The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a potential medicinal plant, will contribute to research on the genetic applications of this genus.  相似文献   
32.
33.
The breakthrough in derivation of human‐induced pluripotent stem cells (hiPSCs) provides an approach that may help overcome ethical and allergenic challenges posed in numerous medical applications involving human cells, including neural stem/progenitor cells (NSCs). Considering the great potential of NSCs in targeted cancer gene therapy, we investigated in this study the tumor tropism of hiPSC‐derived NSCs and attempted to enhance the tropism by manipulation of biological activities of proteins that are involved in regulating the migration of NSCs toward cancer cells. We first demonstrated that hiPSC‐NSCs displayed tropism for both glioblastoma cells and breast cancer cells in vitro and in vivo. We then compared gene expression profiles between migratory and non‐migratory hiPSC‐NSCs toward these cancer cells and observed that the gene encoding neuronal nitric oxide synthase (nNOS) was down‐regulated in migratory hiPSC‐NSCs. Using nNOS inhibitors and nNOS siRNAs, we demonstrated that this protein is a relevant regulator in controlling migration of hiPSC‐NSCs toward cancer cells, and that inhibition of its activity or down‐regulation of its expression can sensitize poorly migratory NSCs and be used to improve their tumor tropism. These findings suggest a novel application of nNOS inhibitors in neural stem cell‐mediated cancer therapy.  相似文献   
34.
We cloned two genes coding F107-C and K88-1NT fimbrial subunits from strains E. coli C and 1NT isolated from Thua Thien Hue province, Vietnam. The mature peptide of faeG gene from strain E. coli 1NT (called faeG-1NT) is 100 % similarity with faeG gene, while the CDS of fedA gene from strain C (called fedA-C) has a similarity of 97 % with the fedA gene. Expression of the faeG-1NT and fedA-C genes in E. coli BL21 Star™ (DE3) produced proteins of ~31 and 22 kDa, respectively. The effect of IPTG concentration on the K88-1NT and F107-C fimbriae production was investigated. The results showed that 0.5 mM IPTG is suitable for higher expression of K88-1NT subunit, while 0.75 mM IPTG strongly stimulated expression of F107-C subunit. The optimal induction time for expression was also examined. Generally, highest expression of K88-1NT subunit occurred after 6 h of induction, while that of F107-C subunit is after 14 h.  相似文献   
35.
ATG4B belongs to the autophagin family of cysteine proteases required for autophagy, an emerging target of cancer therapy. Developing pharmacological ATG4B inhibitors is a very active area of research. However, detailed studies on the role of ATG4B during anticancer therapy are lacking. By analyzing PC-3 and C4-2 prostate cancer cells overexpressing dominant negative ATG4BC74Ain vitro and in vivo, we show that the effects of ATG4BC74A are cell type, treatment, and context-dependent. ATG4BC74A expression can either amplify the effects of cytotoxic therapies or contribute to treatment resistance. Thus, the successful clinical application of ATG4B inhibitors will depend on finding predictive markers of response.  相似文献   
36.
A structurally novel set of inhibitors of bacterial type II topoisomerases with potent in vitro and in vivo antibacterial activity was developed. Dual-targeting ability, hERG inhibition, and pharmacokinetic properties were also assessed.  相似文献   
37.
A series of 2-thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Among them, compound 24S showed stereospecific and excellent TRPV1 antagonism of capsaicin-induced activation. Further, it demonstrated strong anti-allodynic in a rat neuropathic pain model. Consistent with its action in vitro being through TRPV1, compound 24S blocked capsaicin-induced hypothermia in mice. Docking analysis of 24S with our hTRPV1 homology model was performed to identify its binding mode.  相似文献   
38.
In an effort to design inhibitors of human glutaminyl cyclase (QC), we have synthesized a library of N-aryl N-(5-methyl-1H-imidazol-1-yl)propyl thioureas and investigated the contribution of the aryl region of these compounds to their structure–activity relationships as cyclase inhibitors. Our design was guided by the proposed binding mode of the preferred substrate for the cyclase. In this series, compound 52 was identified as the most potent QC inhibitor with an IC50 value of 58 nM, which was two-fold more potent than the previously reported lead 2. Compound 52 is a most promising candidate for future evaluation to monitor its ability to reduce the formation of pGlu-Aβ and Aβ plaques in cells and transgenic animals.  相似文献   
39.
In biochemical networks transient dynamics plays a fundamental role, since the activation of signalling pathways is determined by thresholds encountered during the transition from an initial state (e.g. an initial concentration of a certain protein) to a steady-state. These thresholds can be defined in terms of the inflection points of the stimulus–response curves associated to the activation processes in the biochemical network. In the present work, we present a rigorous discussion as to the suitability of finite-time Lyapunov exponents and metabolic control coefficients for the detection of inflection points of stimulus–response curves with sigmoidal shape.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号